Second cohomology space of the orthosymplectic Lie superalgebra with coefficients in the Lie superalgebra of superpseudodifferential operators
نویسندگان
چکیده
منابع مشابه
Deforming the Lie Superalgebra of Contact Vector Fields on S 1 | 1 inside the Lie Superalgebra of Superpseudodifferential operators on S 1 | 1
We classify nontrivial deformations of the standard embedding of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional supercircle into the Lie super-algebra of superpseudodifferential operators on the supercircle. This approach leads to the deformations of the central charge induced on K(1) by the canonical central extension of SΨDO.
متن کاملYangian of the Queer Lie Superalgebra
Consider the complex matrix Lie superalgebra glN|N with the standard generators Eij where i, j = ±1 , . . . ,±N . Define an involutory automorphism η of glN|N by η (Eij) = E−i,−j . The twisted polynomial current Lie superalgebra g = {X(u) ∈ glN|N [u] : η (X(u)) = X(−u) } has a natural Lie co-superalgebra structure. We quantise the universal enveloping algebra U(g) as a co-Poisson Hopf superalge...
متن کاملRepresentations of the orthosymplectic Lie superalgebra osp(1|4) and paraboson coherent states
Soon after parastatistics has been introduced [1], it was discovered that it has a deep algebraic structure. It turned out that any n pairs of parafermion operators generate the simple Lie algebra so(2n + 1) [2, 3], and n pairs of paraboson creation and annihilation operators b 1 , . . . , bn generate a Lie superalgebra [4], isomorphic to one of the basic classical Lie superalgebras in the clas...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولCentralizer construction of the Yangian of the queer Lie superalgebra
The enveloping algebra U(g) of the Lie superalgebra g has a deformation, called the Yangian of qN . For each M = 1 ,2 , . . . denote by A M N the centralizer of qM ⊂ qN+M in the associative superalgebra U(qN+M ) . We construct a sequence of surjective homomorphisms U(qN ) ← A 1 N ← A 2 N ← . . . . We describe the inverse limit of the sequence of centralizer algebras A1N ,A 2 N , . . . in terms ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2016
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2016.05.008